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BUNDLE HOMOGENEITY AND HOLOMORPHIC
CONNECTIONS

RICHARD S. MILLMAN

1. let&:G—>P ,Mbe a holomorphic principal fiber bundle with
group G, total space P, base space M and projection 7. Let a(M) be the Lie
algebra of all holomorphic vector fields on M, and let b(¢) be the space of all
R, invariant elements of a(P). (By R, we mean the map R, : P — P given by
R, (p) = p%.) Let n, : b(&) — a(M) be the obvious projection. We say that &
is bundle homogeneous if =, is onto. The purpose of this paper is to study the
relation between the bundle homogeneity of & and the existence of a holomorphic
connection on £.

In §2 we fix notation, and in §3 we gather together the various defini-
tions of a holomorphic connection and show that they are equivalent. This
equivalence is well-known but does not seem to be written down anywhere.

In § 4 we prove

Theorem 4.1. If & has a holomorphic connection, then & is bundle ho-
mogeneous.

We also show that the converse of Theorem 4.1 is false in general, but we
prove

‘Theorem 4.5, Let M be complex parallelizable. Then & is bundle homo-
geneous if and only if & admits a holomorphic connection.

If M is compact, Theorem 4.1 is due to 4. Morimoto [9]. In the case
where M is a complex torus, Theorem 4.5 was proven independently by Y.
Matsushima [6] and S. Murakami {10].

Recall that a real product bundle is a holomorphic principal fiber bundle
which admits a C>= cross-section [7]. In § 5, we obtain a necessary condition
for a real product bundle to be bundle homogeneous. This condition is also
sufficient if M is compact (Theorem 5.2), and we also obtain some information
about the kernel of x, in this case.

Since Dolbeault cohomology is not a homotopy invariant (Corollary 6.1),
we are able in § 6 to apply the results of the previous sections to construct an
example of a real product bundle with (noncompact) Kdhler base which does
not admit a holomorphic connection. Because there are no topological obstruc-
tions on a real product bundle, this example shows that the Atiyah obstruction
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12 RICHARD S. MILLMAN

[1] is not a topological invariant, and also that in general the existence of a
holomorphic connection does not depend only on the topological structure of

the bundle [8].
2. We now recall some basic definitions and theorems about holomorphic

connections. Suppose that G is a complex Lie group, M and P are complex
manifolds, and G acts freely and holomorphically on P (on the right). We
write p? for the action of ge Gon pe P, and R,: P — P for R (p) = p8. We

say that £¢: G— P s Mis a holomorphic principal fiber bundle if P is
locally biholomorphically equivalent to M X G. This means (i) M is the quo-
tient space of P under the action of G, (ii) there are an open cover {U,} of M
and biholomorphic homeomorphisms +, : z"'(U,) — U, X G which commute
with the action of G such that

= (U) YU, X G

\ A

e

commutes (where pr, is projection in the first coordinate), (iii) = is holomorphic.
We shall write T',M for the complex tangent space of M at m (i.e., Z,, ¢ T,M
means Z,, = X,, + iY, where X, and Y, are real tangent vectors at m in the
usual sense), and ¢, for the differential of the map ¢. We define the vertical
(ker z), at p by

(ker 7), = {X, ¢ T,(P) | 1,(X,) = O} .

Let G be a complex Lie group of complex dimension r with complex struc-
ture J;. We denote by g the Lie algebra of all left invariant real vector fields on
G, considered as a real Lie group, by g, the Lie algebra of all holomorphic
left invariant vector fields on G, and by g¢ the complexification of g, i.e. g¢ is
the Lie algebra of all left invariant complex vector fields on G. We may also
regard g° as a complex manifold with complex structure J. We shall use
A (M, g°) for the vector space of all Lie algebra valued one-forms on M.
A'(M, g°) may be written as A”(M, g°) @ AV (M, g°) where

A"(M, 6°) = {w e 1M, g% |w(JyA) = Jo(A) for all A e TM} ,
AN (M, g% = {w e £/M, g% |0 xA) = —Jo(A) for all A ¢ TM} .

If h: M — g is smooth, then 4 induces a map dh: TM — g%, i.e., dh ¢ A'(M, a‘),
so that we may write dh as dh = oh + oh where 3he 4“(M,g°) and
ohe A" (M,g%). It 2w,(A) = dh(A) — Jdh(J,A) and 2w,(4) = dh{4) +
Jdn(J ,A), then w € A'(M, g%), v, e A"'(M, g°) and dh = w, + ®,. Therefore
20n(A) = dh{A4) + Jdh(J,A) or



BUNDLE HOMOGENEITY 13
(2.1) 2J5m(A) = Jdh(A) — dh(JyA) .

If a € G, then ad(a): g¢ — ¢° will be the usual adjoint map.

If M is a complex manifold, then in a coordinate neighborhood U we know
that {3/ax*,8/0y* |k = 1, - - -, n} forms a basis for T, at each point m e U.
We define

3/9zF = 1(@/ox* — id/dy¥),  8/97° = ¥@/ox* + id/ay*) .

Let T,,"M = {Z ¢ T,M|JZ = iZ}, and T,"'M = {Z e T,M|JZ = — iZ}.
Then T, .M = T,"'M @ T,"'M, and {(3/3z%),|1 < k < n} (resp. {(3/9Z")n|
1 < k < n}) forms a basis for T,,"°M (resp. T,,"*M) at m e U. A vector field
Z is called a holomorphic vector field if Z,, ¢ T,,»*M and in any cordinate chart
Z, = 2% fH(m)8/0z%),, for some holomorphic functions f7.

We shall now describe the standard embedding of g¢ onto the vertical. For
p € Plet 79 : G— P be defined by ?@(g) = pf. We then define 8, : g° — (ker ),
by 0,(4) = (*@),(A4), where the differential is evaluated at ¢ ¢ G and we have
identified g¢ and T,G in the usual manner.

Proposition 2.1. (a) 6,:q¢ — (ker 7), is an isomorphism of vector spaces
for each p ¢ P.

(b) If A e g,, then the vector field p — 0 ,(A) is a holomorphic vector field.

Proof. (a) follows as in the C* case [3, p. 51].

(b) The fact that ©,(4) is of type (1,0) follows from [4, p. 179]. If
(wy, ---,w,) and (z;, - - -, z,,) are the coordinates about e ¢ G and p ¢ P respec-
tively, then we may write

¢(ZI> s Zp, Wiy oo e, wr) == (@1(Z> W), Tt @n(z’ W))

with @* holomorphic functions, and so
0 r 9Q% 0
? aWj e k§1 awj' (p ) 3Zk D>

which is clearly a holomorphic vector field because 0% (p,e) is a holomor-
W;

phic functjon of p.

3. A connection on § is a distribution H : p— H,, in P such that (1) T P =
(ker ), ®H,, and (2) (R,)H, = H_,. The connection 1-form w ¢ AX(P, g°) is
defined as follows: Any X ¢ TP may be written as the sum of X ¢ H and
vX e ker z. hX is called the horizontal part of X, and vX the vertical part
of X. Let w,(X) = @, '(vX) where 0 is as in Proposition 2.1. The following
proposition is quite easy and allows us to call a connection either a distribution
as in the definition above or a g¢-valued 1-form satisfying the two condltlons
of Proposition 3.1.
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Proposition 3.1. If w is the connection 1-form of a connection, then

1) w,(0,(4)) = A for all A e g°,

(2 R}o0)X) = (ad g Nw(X)) for all X e TP and g € G.
Furthermore, if we AP, g°) satisfies (1) and (2) above, then w is the con-
nection given by

Hp ES {XETPP|a)p(X) = O} .

A connection H is of type (1,0) if JH, = H, for all p e P. This is clearly
equivalent to the condition w € A*°(P, g°) where w is the connection 1-form of
H. A connection is a holomorphic connection if o is of type (1, 0) and 6w = 0.
The following theorem (which appears to be well-known but not written down)
gives the geometric content of the definition of a holomorphic connection. (Re-
call that if Z is a vector field on M, then the horizontal lift Z of Z is the
unique vector field on P such that zr*(Z) = Zand Z(p) e H,forallpeP.)

Theorem 3.2, If&:G — P “sMisa holomorphic principal fiber bun-
dle, and H is a (1, 0) connection on &, then the following are equivalent :

(a) H is a holomorphic connection.

(b) If W is any open subset of P, and X is any holomorphic vector field de-
fined on W, then vX is also a holomorphic vector field on W.

(©) If X is holomorphic on W, then hX is holomorphic on W.

(d) The horizontal lift of any holomorphic vector field which is defined on
any open subset U of M is a holomorphic vector field on z='(U).

Proof. Let (W, -.-,w") be a coordinate chart in G, and (z', - - -, 2?) a co-
ordinate chart in M. We may use (!, - - -, 2% W', - - -, w") as a coordinate in
P via the local trivialization. Suppose that e is the connection 1-form of H. If
X is any holomorphic vector field, and {e,, - - -, e,} is a basis for g°, then we
may write locally w = 3 »* dz’e, and

9 L5 hz, W)

9
X = t 3 b
2 iz, w) =l P

‘where A* and f* are holomorphic functions. Therefore

(1) vX = 0u(X) = 3 W, 6(e) .

Using Proposition 2.1 (b), it follows from (1) that &(«w(X)) is holomorphic
for all X if and only if w;* are holomorphic; hence (a) & (b).

The equivalence of (b) and (c) follows from X = vX + hX.

Assume (c), and suppose that X is a holomorphic vector field on U which
we may assume is small enough so that z~'(U) is trivial. We now regard X as
the vector field (X,0) on U x G, and clearly X = A(X,0); hence (c) = (d).

We now complete the proof by showing that (d) = (a). Because
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a _ {3 k
R )
must be holomorphic for each j by assumption, we see that o, must be holo-
morphic; hence (d) = (a). q.e.d.

There is an alternate formulation due to Atiyah [1]. Because we shall not
need it explicitly, we shall not go into it except to say that in his formulation
a holomorphic connection exists on £ if and only if a certain element (called
the Atiyah obstruction) is zero in a certain cohomology set. To see that this is
equivalent to our definition, see [7, Proposition 3.12].

4. Let £:G—>P-"sMbea holomorphic principal fiber bundle. Let
a{M) be the Lie algebra of all holomorphic vector fields on M, and let b(§) =
{X ea(P)| (R, X =X for all g ¢ G}. We call X e b(&) an infinitesimal bundle
automorphism of &. If X e b(§), then by z,(X) we mean 7 (X),.f = X, (fon)
for any m e M and p € z~'(m). This is well-defined because (R,), X = X for
all g ¢ G, and is holomorphic because of the local product structure. We say
that & is bundle homogeneous if =, : b(§) — a(M) is onto.

Theorem 4.1. If & has a holomorphic connection, then & is bundle homo-
geneous.

Proof. 1f X ¢ a(M), then by Theorem 3.2 the horizontal lift X with respect
to the holomorphic connection is holomorphic. On the other hand, if X(p) is
horizontal, Ehen s0 1s (Rg)*g? (p); hence (Rg)*f ("p) = X(p?). We therefore
have (R),X = X and so X ¢ b(§). Clearly #,(X) = X and so =, is onto.
g.e.d.

By [1, p. 188] we have

Corollary 4.2. Any holomorphic principal fiber bundle whose base space
is a Stein manifold is bundle homogeneous.

Let M be compact, and let A(M) denote the identity component of the com-
plex Lie group of biholomorphic homeomorphisms of M, and B(¢) the identity
component of the group of holomorphic bundle automorphisms (i.e., B(¢) is
the identity component of {¢ € A(P)|rop=mand o R, = R, o gforalla e G}).
Then z : B(¢§) — A(M) is defined by =(¢)(m) = =(¢(p)) for any p € =~ (m).

Proposition 4.3 (Morimoto [9]). (a) If & is bundle homogeneous, then
7 : B(&) — A(M) is onto.

(b) If M is compact, then B(£) is a Lie group, and so r is onito if and only
if & is bundle homogeneous.

Proof. If f; e A(M) is a 1-parameter subgroup for all 0 < ¢ < 1, then f, in-
duces an element X of a(M). Let X e b(¢) such that n*()f' ) = X, and let ¢,
be the local 1-parameter subgroup generated by X at p ¢ P. To prove (a), we
need only to show that ¢ is a global 1-parameter subgroup because clearly
z(¢,) = f, and ¢, € B(&). To do this we show that ¢, is the horizontal lift of f,
with respect to some (not necessarily holomorphic) connection I” on &.
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Let g be any right G-invariant Riemannian metric on P, and H » the ortho-
gonal subspace in T,P of V, + CX,. If I':p — H,, is defined by H, =
H » + cX »» then I' is the desired connection.

The statement that B(§) is a Lie group if M is compact is Morimoto’s
theorem. He also proved that the Lie algebra map induced by z is «,, and so
we have (b). q.e.d.

For compact M Theorem 4.1 is due to Morimoto [9, p. 166] who also
proved

Theorem 4.4. If M is a compact Kihler manifold whose first Betti number
is zero and G is nilpotent, then the holomorphic principal fiber bundle & : G —
P — M is bundle homogeneous.

Both of these theorems of Morimoto are proven by using the Atiyah view-
point. Applying Theorem 4.4 to the canonical C* bundle & over CP" we see
that the converse of Theorem 4.1 is false. We can also do this constructively
as follows: ¢ ¢ B(¢) if and only if ¢: C*** — {0} — C**! — {0} is a holomor-
phic homeomorphism and ¢(2z) = ¢(z) for all 2 e C* and z e C**' — {0}. By
[2, p. 21] ¢ can be extended to a map of C**! — C"*! such that ¢(iz) =
2¢(z) for all 2¢ C and z e C**'. By the standard trick this means that ¢ ¢
Gl(n + 1,C). Clearly any ¢ € Gi(n + 1, C) restricts to an element of B(¢g),
and hence B(¢) = Gl(n + 1, C). By using a result of Lichnerowicz [5] to give
us all A(CP"), we see that x is onto. Recall that a complex parallelizable n-
manifold is one on which there are n holomorphic vector fields which are li-
nearly independent at each point (see [12]). The following theorem gives a
converse to Theorem 4.1.

Theorem 4.5. Suppose that £: G— P — M is a holomorphic fiber bundle,
and M is complex parallelizable. Then £ is bundle homogeneous if and only if
& admits a holomorphic connection.

Proof. We need only to assume that & is bundle homogeneous, and to show
that & admits a holomorphic connection. Let X, - : -, X, ¢ a(M) be linearly in-
dependent. Let X ;* be any element of b(¢) such that z, X ;* = X, and let X ;*
denote the complex conjugate of X ;*. We claim that if H, = span of {X,*(p),
<L XK 0), X)), -+ -, X, *(p)}, then H: p — H, is a holomorphic connec-
tion on &. Since JX;* = iX;* and JX,;* = —iX,*, we see that H, is of type
(1,0). Since X,* is of type (1,0), there is a real tangent vector A such that
X;* =A4 — iJA. Hence (R),X,* = (R), A — iJR),A and X;* = A +
iJA, which imply that (R), X ;* = (R,),A4 + iJ/(R,),A, so that (R,),X;* =
(R, X;* for all g e G. Because X,;* ¢ b(¢), we have that (R,), X * = X,* and
(R, X;* = R, X;* = X,;* so(R,),H, = H,e. By a dimension argument,
to show that T,P = (ker ), © H, we need only to show that (ker z), N H,
= (0), but this is clear because =, is one to one on a basis of H, by definition.
Hence H is a connection of type (1, 0).

If X is any (local) holomorphic vector field on M, then there are (local)
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holomorphic functions ff on M such that X = X%, f‘X,, but then

2 (ffom)X,* is clearly the horizontal lift of X with respect to H and is a
holomorphic vector field. Hence H is a holomorphic connection by Theorem
3.2. g.e.d.

5. A holomorphic principal fiber bundle £ is called a real product bundle if
& admits a C~ section (i.e., a C* map s: M — P such that 7 o5 = 1,). From
{7, Theorems 1.2.6 and 2.3.5] we know that every real product bundle must
take the form &: G — (M X G),, — M where 5 e A% (M, g°) and (for ze M,
AeG, AeTM,BeT,G)

J1.4,B) = (JyA4,JsB + (dR).(4)) ,

and oy = Li[p, 5]. We shall ask when r: B(¢) — A(M) is onto. This will give
us conditions for £ to be bundle homogeneous (see Proposition 4.3). ¢: M X
G — M x G is a C~ bundle automorphism if and only if forze Mand g e G,
¢ takes the form

5.1 #(z, 8 = ((2), s(2)g)

for some fe A(M) and s : M — G (not necessarily holomorphic). ¢ is a bundle
automorphism in this case because

$z, 8 = (F(2), (5o )2

is a C> bundle map which is the inverse of ¢. It is clear from (5.1) that =(¢)
= f, so we must only find conditions on f € 4(M) such that there is an s: M
— G for which ¢ defined by (5.1) is holomorphic with respect to J7. Let « :
M X G — G be defined by a(z, ) = s(2)A. Then ¢(z, D) = (f(2), a(z, 2)), and
so (using upper dot ““.” to denote the differential), for 4 ¢ T;M and B ¢ T,G,

(5.2) .4, B) = (f,(A), &, ,(4, B))

forze M. Let a: G — G be *a(d) = a(z,1) = L*,,4, and o* : M — G be a(2)
= a(z, ) = R,;o5(2). The Leibniz formula {3] says:

&4, B) = (@A) + Ca)B) = L.,(B) + R(A) ,
which, together with (5.2), gives
(5.3) $2,:(A4, B) = (1.(A), Lsr,(B) + R,5(A4)) .
Therefore

]} [€9] ,s(z)lg.sz,z(A ’ B)

5.4 R , . ., ,
= (JMfz(A)w,G(LS(z)B -+ RA‘S.‘(A)) + Rs(z)ﬂ?(fz(A)) .
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On the other hand, (5.3) implies

9.52.,1(]2,1(14 » B)) = éz,;(JMAy JGB + Rﬂ](A))

5.5 , . .
( ) = (f,(JMA), Ls(z)(JGB + Rﬂ](A)) + Rxs'(JMA)) .

Comparing (5.4) with (5.5) we see that ¢ is holomorphic if and only if

JGLS(Z)B + JGR,Z‘S.'(A) + RzRuz)(f;;J])(A)
== Ls(z)(JGB + Rﬂ](A)) + sz(JMA) s

and so we may conclude
Proposition 5.1. Lef ¢(z,2) = (f(z),5(2)A). Then g : M X G—->M X G is
holomorphic if and only if

(56) Jaj(A) - j(JMA) = r‘x(z)v(A) - RS(z)f*v(A)

forall ze M and A ¢ T M. :
Proceeding as in [7], we assume for the moment that there is a C* function
h: M - g such that

g
5.7 y lexp

commutes. Let J be the complex structure of g¢ viewed as a manifold. If
X = h(z) where z € M is fixed, then (5.6) becomes

d(exp)y(Jan(4) — dh(JyA)) = Lo, x9(A) — Rogy xf*n(A) ,
since exp is a holomorphic map for Lie groups. Using (2.1) we thus obtain

2J4d(exp)x0h(A) = Lezy x(9(A4)) — Roxp xf*7(A4) ,

and therefore, by the expression for d(exp) [7],
I — e—adx _ %
2JGd(Lepr)e © _‘Whah(l‘i) = d(Lexp X)v(A) - dReprf 77(‘4) 4

or

I — e—adX _ "
_"—“ah(A) = 7](A) - d(Lexp(-X) oRepr)f 7](A) .

27
“TTadx

Since d(Lexp (- x) © Rexpx) = ad exp (—X) = €%, we have
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I — e—2dn

e—ed @k
d D “ Gh(ay) = nA4) — () .

5.9 2

We say that for w,n e 4*'(M, %), o is exponentially cohomologous to 7
(and write o, 7) if there is a C~ map h: M — g such that

I___ e-—a.dh(z) _ _ st
(5.9) ZJG—————a ) (on(A4)) = 9(A4) — e w(4) .

We say that M has the exponential lift property with respect to G if for any
$:M — G there is an A : M — g such that the diagram (5.7) is commutative.

Theorem 5.2. Let 5 e A%'(M, g°) with M connected, £:G — (M X G),,
— M be a real product bundle with J* as above, r:B(&) — AM), and
fe AM).

@ If fryz,n, then f ¢ n(B(&)).

(b) Suppose that G has the exponential lift property Then fe n-(B(E)) if
and only if f*p5. 9.

(©) If G is abelian and =, (M) is a torsion group, then dim; ker =, = 1.

(d) Suppose G = C*, and M is compact. Then

(i)  f*papy if and only if f € z(B(§)), and
(ii) dimkerz, = 1.

Proof. (a) If f*35,7, then there is an A : M — g satisfying (5.8). If s:
M — G is 5 = expoh, then s satisfies (5.6), and hence f € #(B(£)).

(b) We need only to prove if f e n(B(£)) then f*55,5. By Proposition 5.1,
we have a map s: M — G satisfying (5.6). If h: M — g is the map of dia-
gram (5.7) (which exists by exponential lift), then by the above computation,
h satisfies (5.8), and hence 75, f*7.

(c) Under the hypotheses of (c), (5.8) yields that z(¢) equals the identity
(i.e., f = 1) if and only if there is #: M — g such that 20h =7 — 9 =0,
which happens if and only if % is a constant. Thus s : M — G of (5.1) must
be the constant map at 2 = exp X for some X ¢ g, and therefore

kerz ={¢: M X G—->M X Gl¢(z, 8) = (z, 2g) for some 2 € exp(g)} ,

which implies that dim ker z,, = 1.
(d) Follows from the following proposition and lemma.
Lemma. If G is abelian, then for each g e G the map 8: (M X G) S
M < G ,» 8iven by 8(z, x) = (z, Lx) is holomorphic.
Proof.  B,,.(4,B) = (4, LgB) for A ¢ T,M and B ¢ T,G, hence
J8,,:(4,B) = (UyA,JoLB + R.n(4)) ,
,Bz,zJﬂ(A’B) = (JMA, Lg(JGB + R:ﬂ](A))) ’

and so BJ7 = J8 if G is abelian.
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Proposition 5.3.  Suppose that M is compact and G = C*. Then s: M —G
satisfies (5.6) if and only if there is § : M — G defined by § = L,, o s and satis-
fying (5.6) such that 3 factors through the exponential map as in diagram (5.7).

Proof. Let B,(g) = {zeC*||z —g|<r}, and assume that s: M -G
satisfies (5.6). Let r > 0 be any real number such that s(M) C B,(0). If § =
L, os, then §(M) C L,,B.(0) = B,(2r). This means that 5(M) never winds
around the origin; that is, 3(M) is a simply-connected subspace of C*. Be-
cause the logarithm is well-defined on any simply-connected region in C*, §
factors through the exponential map. By the above lemma, the map §(z, 2) =
(f(2), 5(z)4) is holomorphic in the J* structure on M x G if and only if 8(z, )
= (f(2), s(z)4) is holomorphic. q.e.d.

" We remark that the above proposition can be used to strengthen some re-
sults in [7], e.g., for compact M with G = C*, Exp D(M, G) = 0 if and only
if Pic (M,G) = 0.

6. Combining Theorem 5.2 (b) and Proposition 4.3 yields

Corollary 6.1. If £:C* — (M X C*),, — M is bundle homogeneous, and
* M has the exponential lift property with respect to C*, then for all f ¢ A(M)

(6.1) 9 — 5 = oh

for some h: M — C. If M is compact, then the converse holds.

Observe that (6.1) says that 4(M) must “act” as the identity on 2, ,(M, C);
however, it is known that if f is homotopic to g through complex analytic
maps and dw = 0, it is not necessarily true that f¥*e¢ — g*w = ol for some
l: M — C [11]! The example in [11] is on the Iwasawa manifold. We shall
now present a different example.

I M=C — {0,0)}, A and B are complex numbers with nonzero imagi-
nary parts such that AB s 1, and we define f,: M — M

_ Az, Bz,
fi(z1,2) = (1 + (1 =94 ’Tii- a— Z)B) ’

then f, ¢ A(M), and so in particular f, = f: M — M is an element of A(M).
We define 5 € 4> Y(M, C) by

0(Z,/ (z,r?) when z;, = 0,

6.2) iz = { "
e — 0Z,/(zr)) whengz, #0,

where ¥ = |z, 4 |z,[. 5 is well-defined (but not 6-cohomologous to zero) by
{2, p. 30]. We now calculate f*y — 7. If z; % O, then

f*v(h,zz) = 3(22/(Z1r2) ° f) ’

and therefore
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i Bz, -3
f* Z1422, = a( - ) ’ lf Z #: 0 ’
(6.3) Ve a Az, (| Az, [P + |Bz,P) 1

If f¥ — 5 == oh for some 4 : M — C, then for z, # 0, (6.2) and (6.3) imply

. Bz, Z
ho— 2 _ 2 .
(6.4) 6 a( Az(Azf + |BuP z(zl + [z F))

If we let g: M — C be given by

- _ Bz, _ %
6.5) gz,2) = Mz, 2,) (A(,Azllz + |Bz,P) |Z.F + IZz|2> s

then for (z; # 0) we have, from (6.4),
S(g/zl) = éh —dh=20.

8(z,, z;) is therefore holomorphic for z; + 0. Since g is locally bounded on
M — X where X = {(z;,2,) e C*|z, = 0} and X is thin, we may apply the
Riemann extension theorem [2, p. 19] and conclude that g : M — M. Since a
point is a removable singularity in C? (n > 1), g must be a holomorphic map
of C* to C*. However, by the form of g given by (6.5) we have

1 1

(092 = — — >
8 2 % ABz,

which is not holomorphic at z, = O since AB # 1. Therefore (6.1) cannot
hold in this case. Because M is simply connected, M has the exponential lift
property with respect to C* [7, Proposition 2.2.2], and so Corollary 6.1 im-
plies

Corollary 6.2. There exists a real product bundle which does not have a
holomorphic connection; in particular, the Atiyah obstruction is not a topo-
logical invariant.

Note also that C* — {0, 0} is a Kéhler manifold, so compactness cannot be
dropped from [7, Theorem 3.1.7].
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