BUNDLE HOMOGENEITY AND HOLOMORPHIC CONNECTIONS

RICHARD S. MILLMAN

1. Let $\xi: G \to P \stackrel{\pi}{\longrightarrow} M$ be a holomorphic principal fiber bundle with group G, total space P, base space M and projection π . Let a(M) be the Lie algebra of all holomorphic vector fields on M, and let $b(\xi)$ be the space of all R_g invariant elements of a(P). (By R_g we mean the map $R_g: P \to P$ given by $R_g(p) = p^g$.) Let $\pi_*: b(\xi) \to a(M)$ be the obvious projection. We say that ξ is bundle homogeneous if π_* is onto. The purpose of this paper is to study the relation between the bundle homogeneity of ξ and the existence of a holomorphic connection on ξ .

In § 2 we fix notation, and in § 3 we gather together the various definitions of a holomorphic connection and show that they are equivalent. This equivalence is well-known but does not seem to be written down anywhere.

In § 4 we prove

Theorem 4.1. If ξ has a holomorphic connection, then ξ is bundle homogeneous.

We also show that the converse of Theorem 4.1 is false in general, but we prove

Theorem 4.5. Let M be complex parallelizable. Then ξ is bundle homogeneous if and only if ξ admits a holomorphic connection.

If M is compact, Theorem 4.1 is due to A. Morimoto [9]. In the case where M is a complex torus, Theorem 4.5 was proven independently by Y. Matsushima [6] and S. Murakami [10].

Recall that a real product bundle is a holomorphic principal fiber bundle which admits a C^{∞} cross-section [7]. In § 5, we obtain a necessary condition for a real product bundle to be bundle homogeneous. This condition is also sufficient if M is compact (Theorem 5.2), and we also obtain some information about the kernel of π_* in this case.

Since Dolbeault cohomology is not a homotopy invariant (Corollary 6.1), we are able in § 6 to apply the results of the previous sections to construct an example of a real product bundle with (noncompact) Kähler base which does not admit a holomorphic connection. Because there are no topological obstructions on a real product bundle, this example shows that the Atiyah obstruction

Received June 2, 1972, and, in revised form, June 3, 1974.

[1] is not a topological invariant, and also that in general the existence of a holomorphic connection does not depend only on the topological structure of the bundle [8].

2. We now recall some basic definitions and theorems about holomorphic connections. Suppose that G is a complex Lie group, M and P are complex manifolds, and G acts freely and holomorphically on P (on the right). We write p^g for the action of $g \in G$ on $p \in P$, and $R_g: P \to P$ for $R_g(p) = p^g$. We say that $\xi: G \to P \xrightarrow{\pi} M$ is a holomorphic principal fiber bundle if P is locally biholomorphically equivalent to $M \times G$. This means (i) M is the quotient space of P under the action of G, (ii) there are an open cover $\{U_{\tau}\}$ of M and biholomorphic homeomorphisms $\psi_{\tau}: \pi^{-1}(U_{\tau}) \to U_{\tau} \times G$ which commute with the action of G such that

commutes (where pr_1 is projection in the first coordinate), (iii) π is holomorphic. We shall write T_mM for the complex tangent space of M at m (i.e., $Z_m \in T_mM$ means $Z_m = X_m + iY_m$ where X_m and Y_m are real tangent vectors at m in the usual sense), and ϕ_* for the differential of the map ϕ . We define the vertical (ker π)_p at p by

$$(\ker \pi)_p = \{ X_p \in T_p(P) \, | \, \pi_*(X_p) = 0 \} \ .$$

Let G be a complex Lie group of complex dimension r with complex structure J_G . We denote by $\mathfrak g$ the Lie algebra of all left invariant real vector fields on G, considered as a real Lie group, by $\mathfrak g_0$ the Lie algebra of all holomorphic left invariant vector fields on G, and by $\mathfrak g^C$ the complexification of $\mathfrak g$, i.e. $\mathfrak g^C$ is the Lie algebra of all left invariant complex vector fields on G. We may also regard $\mathfrak g^C$ as a complex manifold with complex structure \hat{J} . We shall use $\Lambda^1(M,\mathfrak g^C)$ for the vector space of all Lie algebra valued one-forms on M. $\Lambda^1(M,\mathfrak g^C)$ may be written as $\Lambda^{(1,0)}(M,\mathfrak g^C) \oplus \Lambda^{(0,1)}(M,\mathfrak g^C)$ where

$$\Lambda^{1,0}(M,\mathfrak{g}^c) = \{ \omega \in \Lambda^1(M,\mathfrak{g}^c) \mid \omega(J_M A) = \hat{J}\omega(A) \text{ for all } A \in TM \} ,$$

$$\Lambda^{0,1}(M,\mathfrak{g}^c) = \{ \omega \in \Lambda^1(M,\mathfrak{g}^c) \mid \omega(J_M A) = -\hat{J}\omega(A) \text{ for all } A \in TM \} .$$

If $h: M \to \mathfrak{g}$ is smooth, then h induces a map $dh: TM \to \mathfrak{g}^c$, i.e., $dh \in \Lambda^1(M, \mathfrak{g}^c)$, so that we may write dh as $dh = \partial h + \bar{\partial} h$ where $\partial h \in \Lambda^{1,0}(M, \mathfrak{g}^c)$ and $\bar{\partial} h \in \Lambda^{0,1}(M, \mathfrak{g}^c)$. If $2\omega_1(A) = dh(A) - \hat{J}dh(J_MA)$ and $2\omega_2(A) = dh(A) + \hat{J}dh(J_MA)$, then $\omega_1 \in \Lambda^{1,0}(M, \mathfrak{g}^c)$, $\omega_2 \in \Lambda^{0,1}(M, \mathfrak{g}^c)$ and $dh = \omega_1 + \omega_2$. Therefore $2\bar{\partial} h(A) = dh(A) + \hat{J}dh(J_MA)$ or

$$(2.1) 2\hat{J}\bar{\partial}h(A) = \hat{J}dh(A) - dh(J_MA).$$

If $a \in G$, then $ad(a): g^c \to g^c$ will be the usual adjoint map.

If M is a complex manifold, then in a coordinate neighborhood U we know that $\{\partial/\partial x^k, \partial/\partial y^k | k = 1, \dots, n\}$ forms a basis for $T_m M$ at each point $m \in U$. We define

$$\partial/\partial z^k = \frac{1}{2}(\partial/\partial x^k - i\partial/\partial y^k)$$
, $\partial/\partial \bar{z}^k = \frac{1}{2}(\partial/\partial x^k + i\partial/\partial y^k)$.

Let $T_m^{1,0}M = \{Z \in T_mM | JZ = iZ\}$, and $T_m^{0,1}M = \{Z \in T_mM | JZ = -iZ\}$. Then $T_mM = T_m^{1,0}M \oplus T_m^{0,1}M$, and $\{(\partial/\partial z^k)_m | 1 \le k \le n\}$ (resp. $\{(\partial/\partial \bar{z}^k)_m | 1 \le k \le n\}$) forms a basis for $T_m^{1,0}M$ (resp. $T_m^{0,1}M$) at $m \in U$. A vector field Z is called a *holomorphic vector field* if $Z_m \in T_m^{1,0}M$ and in any coordinate chart $Z_m = \sum_{j=1}^n f^j(m)(\partial/\partial z^j)_m$ for some holomorphic functions f^j .

We shall now describe the standard embedding of \mathfrak{g}^C onto the vertical. For $p \in P$ let ${}^p\Phi: G \to P$ be defined by ${}^p\Phi(g) = p^g$. We then define $\Theta_p: \mathfrak{g}^C \to (\ker \pi)_p$ by $\Theta_p(A) = ({}^p\Phi)_*(A)$, where the differential is evaluated at $e \in G$ and we have identified \mathfrak{g}^C and T_eG in the usual manner.

Proposition 2.1. (a) $\Theta_p : \mathfrak{g}^c \to (\ker \pi)_p$ is an isomorphism of vector spaces for each $p \in P$.

- (b) If $A \in \mathfrak{g}_0$, then the vector field $p \to \Theta_p(A)$ is a holomorphic vector field. Proof. (a) follows as in the C^{∞} case [3, p. 51].
- (b) The fact that $\Theta_p(A)$ is of type (1,0) follows from [4, p. 179]. If (w_1, \dots, w_r) and (z_1, \dots, z_n) are the coordinates about $e \in G$ and $p \in P$ respectively, then we may write

$$\Phi(z_1, \dots, z_n, w_1, \dots, w_r) = (\Phi^1(z, w), \dots, \Phi^n(z, w))$$

with Φ^k holomorphic functions, and so

$$\Theta_{p}\left(\frac{\partial}{\partial w_{i}}\right)_{e} = \sum_{k=1}^{n} \frac{\partial \Phi^{k}}{\partial w_{i}} (p, e) \left(\frac{\partial}{\partial z_{k}}\right)_{p},$$

which is clearly a holomorphic vector field because $\frac{\partial \Phi^k}{\partial w_j}(p, e)$ is a holomorphic function of p.

3. A connection on ξ is a distribution $H: p \to H_p$ in P such that (1) $T_pP = (\ker \pi)_p \oplus H_p$, and (2) $(R_a)_*H_p = H_{pa}$. The connection 1-form $\omega \in \Lambda^1(P, \mathfrak{g}^C)$ is defined as follows: Any $X \in TP$ may be written as the sum of $hX \in H$ and $vX \in \ker \pi$. hX is called the horizontal part of X, and vX the vertical part of X. Let $\omega_p(X) = \Theta_p^{-1}(vX)$ where Θ is as in Proposition 2.1. The following proposition is quite easy and allows us to call a connection either a distribution as in the definition above or a \mathfrak{g}^C -valued 1-form satisfying the two conditions of Proposition 3.1.

Proposition 3.1. If ω is the connection 1-form of a connection, then

- (1) $\omega_v(\Theta_v(A)) = A \text{ for all } A \in \mathfrak{g}^C$,
- (2) $(R_g^*\omega)(X) = (\operatorname{ad} g^{-1})(\omega(X))$ for all $X \in TP$ and $g \in G$. Furthermore, if $\omega \in \Lambda^1(P, \mathfrak{g}^C)$ satisfies (1) and (2) above, then ω is the connection given by

$$H_{\mathfrak{p}} = \{X \in T_{\mathfrak{p}}P | \omega_{\mathfrak{p}}(X) = 0\}.$$

A connection H is of $type\ (1,0)$ if $JH_p=H_p$ for all $p\in P$. This is clearly equivalent to the condition $\omega\in \Lambda^{1,0}(P,\mathfrak{g}^C)$ where ω is the connection 1-form of H. A connection is a holomorphic connection if ω is of type (1,0) and $\bar{\partial}\omega=0$. The following theorem (which appears to be well-known but not written down) gives the geometric content of the definition of a holomorphic connection. (Recall that if Z is a vector field on M, then the horizontal lift \tilde{Z} of Z is the unique vector field on P such that $\pi_*(\tilde{Z})=Z$ and $\tilde{Z}(p)\in H_p$ for all $p\in P$.)

Theorem 3.2. If $\xi: G \to P \xrightarrow{\pi} M$ is a holomorphic principal fiber bundle, and H is a (1,0) connection on ξ , then the following are equivalent:

- (a) H is a holomorphic connection.
- (b) If W is any open subset of P, and X is any holomorphic vector field defined on W, then vX is also a holomorphic vector field on W.
 - (c) If X is holomorphic on W, then hX is holomorphic on W.
- (d) The horizontal lift of any holomorphic vector field which is defined on any open subset U of M is a holomorphic vector field on $\pi^{-1}(U)$.

Proof. Let (w^1, \dots, w^r) be a coordinate chart in G, and (z^1, \dots, z^n) a coordinate chart in M. We may use $(z^1, \dots, z^n, w^1, \dots, w^r)$ as a coordinate in P via the local trivialization. Suppose that ω is the connection 1-form of H. If X is any holomorphic vector field, and $\{e_1, \dots, e_r\}$ is a basis for \mathfrak{g}^C , then we may write locally $\omega = \sum \omega_i^k dz^j e_k$ and

$$X = \sum f^{l}(z, w) \frac{\partial}{\partial w^{l}} + \sum h^{k}(z, w) \frac{\partial}{\partial z^{k}},$$

where h^k and f^l are holomorphic functions. Therefore

(1)
$$vX = \Theta\omega(X) = \sum_{j,k} h^j \omega_j^{\ k} \Theta(e_k) .$$

Using Proposition 2.1 (b), it follows from (1) that $\Theta(\omega(X))$ is holomorphic for all X if and only if ω_j^k are holomorphic; hence (a) \rightleftharpoons (b).

The equivalence of (b) and (c) follows from X = vX + hX.

Assume (c), and suppose that X is a holomorphic vector field on U which we may assume is small enough so that $\pi^{-1}(U)$ is trivial. We now regard X as the vector field (X,0) on $U \times G$, and clearly $\tilde{X} = h(X,0)$; hence $(c) \Rightarrow (d)$.

We now complete the proof by showing that (d) \Rightarrow (a). Because

$$\frac{\widetilde{\partial}}{\partial z^j} = \left(\frac{\partial}{\partial z^j} - \sum_k \omega_j^k \Theta(e_k)\right)$$

must be holomorphic for each i by assumption, we see that ω_i^k must be holomorphic; hence $(d) \Rightarrow (a)$. q.e.d.

There is an alternate formulation due to Atiyah [1]. Because we shall not need it explicitly, we shall not go into it except to say that in his formulation a holomorphic connection exists on ξ if and only if a certain element (called the *Atiyah obstruction*) is zero in a certain cohomology set. To see that this is equivalent to our definition, see [7, Proposition 3.12].

4. Let $\xi: G \to P \xrightarrow{\pi} M$ be a holomorphic principal fiber bundle. Let a(M) be the Lie algebra of all holomorphic vector fields on M, and let $b(\xi) = \{X \in a(P) \mid (R_g)_* X = X \text{ for all } g \in G\}$. We call $X \in b(\xi)$ an infinitesimal bundle automorphism of ξ . If $X \in b(\xi)$, then by $\pi_*(X)$ we mean $\pi_*(X)_m f = X_p$ ($f \circ \pi$) for any $m \in M$ and $p \in \pi^{-1}(m)$. This is well-defined because $(R_g)_* X = X$ for all $g \in G$, and is holomorphic because of the local product structure. We say that ξ is bundle homogeneous if $\pi_*: b(\xi) \to a(M)$ is onto.

Theorem 4.1. If ξ has a holomorphic connection, then ξ is bundle homogeneous.

Proof. If $X \in a(M)$, then by Theorem 3.2 the horizontal lift \tilde{X} with respect to the holomorphic connection is holomorphic. On the other hand, if $\tilde{X}(p)$ is horizontal, then so is $(R_g)_*\tilde{X}(p)$; hence $(R_g)_*\tilde{X}(p)=\tilde{X}(p^g)$. We therefore have $(R_g)_*\tilde{X}=\tilde{X}$ and so $\tilde{X}\in b(\xi)$. Clearly $\pi_*(\tilde{X})=X$ and so π_* is onto. q.e.d.

By [1, p. 188] we have

Corollary 4.2. Any holomorphic principal fiber bundle whose base space is a Stein manifold is bundle homogeneous.

Let M be compact, and let A(M) denote the identity component of the complex Lie group of biholomorphic homeomorphisms of M, and $B(\xi)$ the identity component of the group of holomorphic bundle automorphisms (i.e., $B(\xi)$ is the identity component of $\{\phi \in A(P) \mid \pi \circ \phi = \pi \text{ and } \phi \circ R_\alpha = R_\alpha \circ \phi \text{ for all } a \in G\}$). Then $\pi: B(\xi) \to A(M)$ is defined by $\pi(\phi)(m) = \pi(\phi(p))$ for any $p \in \pi^{-1}(m)$.

Proposition 4.3 (Morimoto [9]). (a) If ξ is bundle homogeneous, then $\pi: B(\xi) \to A(M)$ is onto.

(b) If M is compact, then $B(\xi)$ is a Lie group, and so π is onto if and only if ξ is bundle homogeneous.

Proof. If $f_t \in A(M)$ is a 1-parameter subgroup for all $0 \le t \le 1$, then f_t induces an element X of a(M). Let $\tilde{X} \in b(\xi)$ such that $\pi_*(\tilde{X}) = X$, and let ϕ_t be the local 1-parameter subgroup generated by \tilde{X} at $p \in P$. To prove (a), we need only to show that ϕ is a global 1-parameter subgroup because clearly $\pi(\phi_t) = f_t$ and $\phi_t \in B(\xi)$. To do this we show that ϕ_t is the horizontal lift of f_t with respect to some (not necessarily holomorphic) connection Γ on ξ .

Let g be any right G-invariant Riemannian metric on P, and \tilde{H}_p the orthogonal subspace in T_pP of $V_p + C\tilde{X}_p$. If $\Gamma: p \to H_p$ is defined by $H_p = \tilde{H}_p + C\tilde{X}_p$, then Γ is the desired connection.

The statement that $B(\xi)$ is a Lie group if M is compact is Morimoto's theorem. He also proved that the Lie algebra map induced by π is π_* , and so we have (b). q.e.d.

For compact M Theorem 4.1 is due to Morimoto [9, p. 166] who also proved

Theorem 4.4. If M is a compact Kähler manifold whose first Betti number is zero and G is nilpotent, then the holomorphic principal fiber bundle $\xi: G \to P \to M$ is bundle homogeneous.

Both of these theorems of Morimoto are proven by using the Atiyah viewpoint. Applying Theorem 4.4 to the canonical C^* bundle ξ over CP^n we see that the converse of Theorem 4.1 is false. We can also do this constructively as follows: $\phi \in B(\xi)$ if and only if $\phi: C^{n+1} - \{0\} \to C^{n+1} - \{0\}$ is a holomorphic homeomorphism and $\phi(\lambda z) = \lambda \phi(z)$ for all $\lambda \in C^*$ and $z \in C^{n+1} - \{0\}$. By [2, p. 21] ϕ can be extended to a map of $C^{n+1} \to C^{n+1}$ such that $\phi(\lambda z) = \lambda \phi(z)$ for all $\lambda \in C$ and $z \in C^{n+1}$. By the standard trick this means that $\phi \in Gl(n+1,C)$. Clearly any $\phi \in Gl(n+1,C)$ restricts to an element of $B(\xi)$, and hence $B(\xi) = Gl(n+1,C)$. By using a result of Lichnerowicz [5] to give us all $A(CP^n)$, we see that π is onto. Recall that a complex parallelizable n-manifold is one on which there are n holomorphic vector fields which are linearly independent at each point (see [12]). The following theorem gives a converse to Theorem 4.1.

Theorem 4.5. Suppose that $\xi: G \to P \to M$ is a holomorphic fiber bundle, and M is complex parallelizable. Then ξ is bundle homogeneous if and only if ξ admits a holomorphic connection.

Proof. We need only to assume that ξ is bundle homogeneous, and to show that ξ admits a holomorphic connection. Let $X_1, \dots, X_n \in a(M)$ be linearly independent. Let X_j^* be any element of $b(\xi)$ such that $\pi_*X_j^* = X_j$, and let \overline{X}_j^* denote the complex conjugate of X_j^* . We claim that if $H_p = \text{span}$ of $\{X_1^*(p), \dots, X_n^*(p), \overline{X}_1^*(p), \dots, \overline{X}_n^*(p)\}$, then $H \colon p \to H_p$ is a holomorphic connection on ξ . Since $JX_j^* = iX_j^*$ and $J\overline{X}_j^* = -i\overline{X}_j^*$, we see that H_p is of type (1,0). Since X_j^* is of type (1,0), there is a real tangent vector A such that $X_j^* = A - iJA$. Hence $(R_g)_*X_j^* = (R_g)_*A - iJ(R_g)_*A$ and $\overline{X}_j^* = A + iJA$, which imply that $(R_g)_*\overline{X}_j^* = (R_g)_*A + iJ(R_g)_*A$, so that $(R_g)_*\overline{X}_j^* = \overline{(R_g)_*X_j^*}$ for all $g \in G$. Because $X_j^* \in b(\xi)$, we have that $(R_g)_*X_j^* = X_j^*$ and $(R_g)_*\overline{X}_j^* = \overline{(R_g)_*X_j^*} = \overline{X}_j^*$, so $(R_g)_*H_p = H_{pg}$. By a dimension argument, to show that $T_pP = (\ker \pi)_p \oplus H_p$ we need only to show that $(\ker \pi)_p \cap H_p = (0)$, but this is clear because π_* is one to one on a basis of H_p by definition. Hence H is a connection of type (1,0).

If X is any (local) holomorphic vector field on M, then there are (local)

holomorphic functions f^j on M such that $X = \sum_{j=1}^n f^j X_j$, but then $\sum_{j=1}^n (f^j \circ \pi) X_j^*$ is clearly the horizontal lift of X with respect to H and is a holomorphic vector field. Hence H is a holomorphic connection by Theorem 3.2. q.e.d.

5. A holomorphic principal fiber bundle ξ is called a *real product bundle* if ξ admits $a \ C^{\infty}$ section (i.e., $a \ C^{\infty}$ map $s \colon M \to P$ such that $\pi \circ s = 1_M$). From [7, Theorems 1.2.6 and 2.3.5] we know that every real product bundle must take the form $\xi \colon G \to (M \times G)_{J^{\eta}} \to M$ where $\eta \in \Lambda^{0,1}(M, \mathfrak{g}^C)$ and (for $z \in M$, $\lambda \in G$, $A \in T_z M$, $B \in T_{\lambda} G$)

$$J_{z,\lambda}^{\eta}(A,B) = (J_M A, J_G B + (dR_{\lambda})_e \eta(A)) ,$$

and $\bar{\partial}\eta = \frac{1}{4}i[\eta, \eta]$. We shall ask when $\pi : B(\xi) \to A(M)$ is onto. This will give us conditions for ξ to be bundle homogeneous (see Proposition 4.3). $\phi : M \times G \to M \times G$ is a C^{∞} bundle automorphism if and only if for $z \in M$ and $g \in G$, ϕ takes the form

$$\phi(z,g) = (f(z), s(z)g)$$

for some $f \in A(M)$ and $s: M \to G$ (not necessarily holomorphic). ϕ is a bundle automorphism in this case because

$$\tilde{\phi}(z,g) = (f^{-1}(z), ((s \circ f^{-1})(z))^{-1}g)$$

is a C^{∞} bundle map which is the inverse of ϕ . It is clear from (5.1) that $\pi(\phi) = f$, so we must only find conditions on $f \in A(M)$ such that there is an $s : M \to G$ for which ϕ defined by (5.1) is holomorphic with respect to J^{η} . Let $\alpha : M \times G \to G$ be defined by $\alpha(z, \lambda) = s(z)\lambda$. Then $\phi(z, \lambda) = (f(z), \alpha(z, \lambda))$, and so (using upper dot "·" to denote the differential), for $A \in T_zM$ and $B \in T_\lambda G$,

$$\dot{\phi}_{z,\lambda}(A,B) = (\dot{f}_z(A), \dot{\alpha}_{z,\lambda}(A,B))$$

for $z \in M$. Let ${}^{z}\alpha: G \to G$ be ${}^{z}\alpha(\lambda) = \alpha(z, \lambda) = L^{s}_{(z)}\lambda$, and $\alpha^{\lambda}: M \to G$ be $\alpha^{\lambda}(z) = \alpha(z, \lambda) = R_{\lambda} \circ s(z)$. The Leibniz formula [3] says:

$$\dot{\alpha}_{z,\lambda}(A,B) = (\dot{\alpha}^{\lambda})_z(A) + ({}^z\dot{\alpha})_{\lambda}(B) = \dot{L}_{z(z)}(B) + \dot{R}_{\lambda}\dot{s}(A) ,$$

which, together with (5.2), gives

(5.3)
$$\dot{\phi}_{z,\lambda}(A,B) = (\dot{f}_z(A), \dot{L}_{s(z)}(B) + \dot{R}_{\lambda}\dot{s}(A)) .$$

Therefore

(5.4)
$$J_{f(z),s(z)\lambda}^{\eta}\dot{\phi}_{z,\lambda}(A,B) = (J_{M}\dot{f}_{z}(A), J_{G}(\dot{L}_{s(z)}B + \dot{R}_{\lambda}\dot{s}(A)) + \dot{R}_{s(z)\lambda}\eta(\dot{f}_{z}(A)).$$

On the other hand, (5.3) implies

(5.5)
$$\dot{\phi}_{z,\lambda}(J_{z,\lambda}^{\eta}(A,B)) = \dot{\phi}_{z,\lambda}(J_{M}A,J_{G}B + \dot{R}_{\lambda}\eta(A))$$

$$= (\dot{f}_{z}(J_{M}A), \dot{L}_{s(z)}(J_{G}B + \dot{R}_{\lambda}\eta(A)) + \dot{R}_{\lambda}\dot{s}(J_{M}A)) .$$

Comparing (5.4) with (5.5) we see that ϕ is holomorphic if and only if

$$J_G \dot{L}_{s(z)} B + J_G \dot{R}_{\lambda} \dot{s}(A) + \dot{R}_{\lambda} \dot{R}_{s(z)} (f_* \eta)(A)$$

= $\dot{L}_{s(z)} (J_G B + \dot{R}_{\lambda} \eta(A)) + \dot{R}_{\lambda} \dot{s}(J_M A)$,

and so we may conclude

Proposition 5.1. Let $\phi(z, \lambda) = (f(z), s(z)\lambda)$. Then $\phi: M \times G \to M \times G$ is holomorphic if and only if

(5.6)
$$J_{G}\dot{s}(A) - \dot{s}(J_{M}A) = \dot{L}_{s(z)}\eta(A) - \dot{R}_{s(z)}f^{*}\eta(A)$$

for all $z \in M$ and $A \in T_zM$.

Proceeding as in [7], we assume for the moment that there is a C^{∞} function $h: M \to \mathfrak{g}$ such that

$$(5.7) \qquad \qquad h \qquad \downarrow \exp \qquad \qquad M \xrightarrow{s} G$$

commutes. Let \hat{J} be the complex structure of g^c viewed as a manifold. If X = h(z) where $z \in M$ is fixed, then (5.6) becomes

$$d(\exp)_{X}(\hat{J}dh(A) - dh(J_{M}A)) = \dot{L}_{\exp X}\eta(A) - \dot{R}_{\exp X}f^{*}\eta(A) ,$$

since exp is a holomorphic map for Lie groups. Using (2.1) we thus obtain

$$2J_G d(\exp)_X \bar{\partial} h(A) = \dot{L}_{\exp X}(\eta(A)) - \dot{R}_{\exp X} f^* \eta(A)$$
,

and therefore, by the expression for $d(\exp)$ [7],

$$2J_G d(L_{\exp X})_e \circ \frac{I - e^{-\operatorname{ad} X}}{\operatorname{ad} X} \bar{\partial} h(A) = d(L_{\exp X}) \eta(A) - dR_{\exp X} f^* \eta(A) ,$$

or

$$2J_G \frac{I - e^{-\operatorname{ad} X}}{\operatorname{ad} X} \bar{\partial} h(A) = \eta(A) - d(L_{\exp(-X)} \circ R_{\exp X}) f^* \eta(A) .$$

Since $d(L_{\exp(-X)} \circ R_{\exp X}) = \operatorname{ad} \exp(-X) = e^{-\operatorname{ad} X}$, we have

$$(5.8) 2J_G \frac{I - e^{-\operatorname{ad} h(z)}}{\operatorname{ad} h(z)} (\bar{\partial} h(A)) = \eta(A) - e^{-\operatorname{ad} h(z)} f^* \eta(A) .$$

We say that for $\omega, \eta \in \Lambda^{0,1}(M, \mathfrak{g}^c)$, ω is exponentially cohomologous to η (and write $\omega_{\exp}^{\sim} \eta$) if there is a C^{∞} map $h: M \to \mathfrak{g}$ such that

$$2J_G \frac{I - e^{-\operatorname{ad} h(z)}}{\operatorname{ad} h(z)} (\bar{\partial} h(A)) = \eta(A) - e^{-\operatorname{ad} h(z)} \omega(A) .$$

We say that M has the exponential lift property with respect to G if for any $s: M \to G$ there is an $h: M \to \mathfrak{g}$ such that the diagram (5.7) is commutative.

Theorem 5.2. Let $\eta \in \Lambda^{0,1}(M, \mathfrak{g}^C)$ with M connected, $\xi : G \to (M \times G)_{J^{\eta}} \to M$ be a real product bundle with J^{η} as above, $\pi : B(\xi) \to A(M)$, and $f \in A(M)$.

- (a) If $f^*\eta_{\exp}^{\sim}\eta$, then $f \in \pi(B(\xi))$.
- (b) Suppose that G has the exponential lift property. Then $f \in \pi(B(\xi))$ if and only if $f^*\eta_{\exp}^{\sim}\eta$.
 - (c) If G is abelian and π_1 (M) is a torsion group, then $\dim_C \ker \pi_* = 1$.
 - (d) Suppose $G = C^*$, and M is compact. Then
 - (i) $f^*\eta_{\exp}^{\sim}\eta$ if and only if $f \in \pi(B(\xi))$, and
 - (ii) dim ker $\pi_* = 1$.

Proof. (a) If $f^*\eta_{\exp}^{\infty}\eta$, then there is an $h:M\to \mathfrak{g}$ satisfying (5.8). If $s:M\to G$ is $s=\exp\circ h$, then s satisfies (5.6), and hence $f\in\pi(B(\xi))$.

- (b) We need only to prove if $f \in \pi(B(\xi))$ then $f^*\eta_{\exp}^*\eta$. By Proposition 5.1, we have a map $s: M \to G$ satisfying (5.6). If $h: M \to g$ is the map of diagram (5.7) (which exists by exponential lift), then by the above computation, h satisfies (5.8), and hence $\eta_{\exp}^*f^*\eta$.
- (c) Under the hypotheses of (c), (5.8) yields that $\pi(\phi)$ equals the identity (i.e., $f = 1_M$) if and only if there is $h: M \to \mathfrak{g}$ such that $2\bar{\delta}h = \eta \eta = 0$, which happens if and only if h is a constant. Thus $s: M \to G$ of (5.1) must be the constant map at $\lambda = \exp X$ for some $X \in \mathfrak{g}$, and therefore

$$\ker \, \pi = \{\phi: M \times G \to M \times G \,|\, \phi(z,g) = (z,\lambda g) \text{ for some } \lambda \in \exp(\mathfrak{g})\} \ ,$$

which implies that dim ker $\pi_* = 1$.

(d) Follows from the following proposition and lemma.

Lemma. If G is abelian, then for each $g \in G$ the map $\beta : (M \times G)_{J^{\eta}} \to (M \times G)_{J^{\eta}}$ given by $\beta(z, x) = (z, L_g x)$ is holomorphic.

Proof. $\dot{\beta}_{z,x}(A,B) = (A,\dot{L}_{z}B)$ for $A \in T_{z}M$ and $B \in T_{x}G$, hence

$$J^{\eta}\dot{\beta}_{z,x}(A,B) = (J_{M}A, J_{G}\dot{L}_{g}B + \dot{R}_{gx}\eta(A)),$$

 $\dot{\beta}_{z,x}J^{\eta}(A,B) = (J_{M}A, \dot{L}_{g}(J_{G}B + \dot{R}_{x}\eta(A))),$

and so $\beta J^{\eta} = J^{\eta} \dot{\beta}$ if G is abelian.

Proposition 5.3. Suppose that M is compact and $G = C^*$. Then $s: M \to G$ satisfies (5.6) if and only if there is $\tilde{s}: M \to G$ defined by $\tilde{s} = L_{2\tau} \circ s$ and satisfying (5.6) such that \tilde{s} factors through the exponential map as in diagram (5.7).

Proof. Let $B_r(g) = \{z \in C^* | |z - g| < r\}$, and assume that $s: M \to G$ satisfies (5.6). Let r > 0 be any real number such that $s(M) \subset B_r(0)$. If $\tilde{s} = L_{2r} \circ s$, then $\tilde{s}(M) \subset L_{2r}B_r(0) = B_r(2r)$. This means that $\tilde{s}(M)$ never winds around the origin; that is, $\tilde{s}(M)$ is a simply-connected subspace of C^* . Because the logarithm is well-defined on any simply-connected region in C^* , \tilde{s} factors through the exponential map. By the above lemma, the map $\tilde{\beta}(z,\lambda) = (f(z), \tilde{s}(z)\lambda)$ is holomorphic in the J^* structure on $M \times G$ if and only if $\beta(z,\lambda) = (f(z), s(z)\lambda)$ is holomorphic. q.e.d.

We remark that the above proposition can be used to strengthen some results in [7], e.g., for compact M with $G = C^*$, Exp D(M, G) = 0 if and only if Pic (M, G) = 0.

6. Combining Theorem 5.2 (b) and Proposition 4.3 yields

Corollary 6.1. If $\xi: C^* \to (M \times C^*)_{J^\eta} \to M$ is bundle homogeneous, and M has the exponential lift property with respect to C^* , then for all $f \in A(M)$

$$(6.1) f^*\eta - \eta = \bar{\partial}h$$

for some $h: M \to C$. If M is compact, then the converse holds.

Observe that (6.1) says that A(M) must "act" as the identity on $\mathcal{D}_{0,1}(M,C)$; however, it is known that if f is homotopic to g through complex analytic maps and $\bar{\partial}\omega=0$, it is not necessarily true that $f^*\omega-g^*\omega=\bar{\partial}l$ for some $l:M\to C$ [11]! The example in [11] is on the Iwasawa manifold. We shall now present a different example.

If $M = C^2 - \{(0,0)\}$, A and B are complex numbers with nonzero imaginary parts such that $AB \neq 1$, and we define $f_t : M \to M$

$$f_t(z_1, z_2) = \left(\frac{Az_1}{1 + (1 - t)A}, \frac{Bz_2}{1 + (1 - t)B}\right),$$

then $f_t \in A(M)$, and so in particular $f_1 = f : M \to M$ is an element of A(M). We define $\eta \in A^{0, 1}(M, C)$ by

(6.2)
$$\eta_{(z_1,z_2)} = \begin{cases} \bar{\partial}(\bar{z}_2/(z_1r^2)) & \text{when } z_1 \neq 0, \\ -\bar{\partial}(\bar{z}_1/(z_2r^2)) & \text{when } z_2 \neq 0, \end{cases}$$

where $r^2 = |z_1|^2 + |z_2|^2$. η is well-defined (but not $\bar{\partial}$ -cohomologous to zero) by [2, p. 30]. We now calculate $f^*\eta - \eta$. If $z_1 \neq 0$, then

$$f^*\eta_{(z_1,z_2)} = \bar{\partial}(\bar{z}_2/(z_1r^2)\circ f)$$
,

and therefore

(6.3)
$$f^*\eta_{(z_1,z_2)} = \tilde{\partial}\left(\frac{\overline{Bz_2}}{Az_1(|Az_1|^2 + |Bz_2|^2)}\right), \quad \text{if } z_1 \neq 0.$$

If $f^*\eta - \eta = \bar{\partial}h$ for some $h: M \to C$, then for $z_1 \neq 0$, (6.2) and (6.3) imply

(6.4)
$$\bar{\partial}h = \bar{\partial}\left(\frac{\overline{Bz_2}}{Az_1(|Az_1|^2 + |Bz_2|^2)} - \frac{\bar{z}_2}{z_1(|z_1|^2 + |z_2|^2)}\right).$$

If we let $g: M \to C$ be given by

(6.5)
$$g(z_1, z_2) = z_1 h(z_1, z_2) - \left(\frac{\overline{Bz_2}}{A(|Az_1|^2 + |Bz_2|^2)} - \frac{\overline{z_2}}{|z_1|^2 + |z_2|^2} \right),$$

then for $(z_1 \neq 0)$ we have, from (6.4),

$$\bar{\partial}(g/z_1) = \bar{\partial}h - \bar{\partial}h = 0$$
.

 $g(z_1, z_2)$ is therefore holomorphic for $z_1 \neq 0$. Since g is locally bounded on M - X where $X = \{(z_1, z_2) \in C^2 | z_1 = 0\}$ and X is thin, we may apply the Riemann extension theorem [2, p. 19] and conclude that $g: M \to M$. Since a point is a removable singularity in C^n (n > 1), g must be a holomorphic map of C^2 to C^2 . However, by the form of g given by (6.5) we have

$$g(0,z_2) = \frac{1}{z_2} - \frac{1}{ABz_2},$$

which is not holomorphic at $z_2 = 0$ since $AB \neq 1$. Therefore (6.1) cannot hold in this case. Because M is simply connected, M has the exponential lift property with respect to C^* [7, Proposition 2.2.2], and so Corollary 6.1 implies

Corollary 6.2. There exists a real product bundle which does not have a holomorphic connection; in particular, the Atiyah obstruction is not a topological invariant.

Note also that $C^2 - \{0, 0\}$ is a Kähler manifold, so compactness cannot be dropped from [7, Theorem 3.1.7].

Bibliography

- M. F. Atiyah, Complex analytic connections in fiber bundles, Trans. Amer. Math. Soc. 85 (1957) 181-207.
- [2] R. Gunning & H. Rossi, Analytic functions of several complex variables, Prentice Hall, Englewood, New Jersey, 1965.
- [3] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
- [4] —, Foundations of differential geometry, Vol. II, Interscience, New York, 1969.

- A. Lichnerowicz, Sur les transformations analytiques des variétés kähleriennes compactes, C. R. Acad. Sci. Paris 244 (1957) 3011-3013.
- Y. Matsushima, Fibrés holomorphes sur un tore complexe, Nagoya Math. J. 14 (1959) 1-24.
- [7] R. S. Millman, Complex structures on real product bundles with applications to differential geometry, Trans. Amer. Math. Soc. 166 (1972) 71-99.
- —, The Holomorphic connection as a C^{\infty} phenomenon, Proc. 13th Biennial Sem., Canad. Math. Congress, Vol. 2, 1971, 93-101. [8] -
- [9] A. Morimoto, Sur le groupe d'automorphismes d'un espace fibré principal analy-tique complexe, Nagoya Math. J. 13 (1958) 157-178.
- [10] S. Murakami, Sur certains espaces fibrés principaux holomorphes admettant des connexions holomorphes, Osaka Math. J. 11 (1959) 43-62.
 [11] D. C. Spencer & V. K. A. M. Gugenheim, Chain homotopy and the de Rham theory, Proc. Amer. Math. Soc. 7 (1956) 144-152.
- [12] H. C. Wang, Complex parallelizable manifolds, Proc. Amer. Math. Soc. 5 (1954) 771-776.

SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE